Finite p -groups having Schur multiplier of maximum order

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on the order of the schur multiplier of a pair of finite $p$-groups ii

‎let $g$ be a finite $p$-group and $n$ be a normal subgroup of $g$ with‎ ‎$|n|=p^n$ and $|g/n|=p^m$‎. ‎a result of ellis (1998) shows‎ ‎that the order of the schur multiplier of such a pair $(g,n)$ of finite $p$-groups is bounded‎ ‎by $ p^{frac{1}{2}n(2m+n-1)}$ and hence it is equal to $‎ ‎p^{frac{1}{2}n(2m+n-1)-t}$ for some non-negative integer $t$‎. ‎recently‎, ‎the authors have characterized...

متن کامل

on the order of the schur multiplier of a pair of finite p-groups ii

‎let $g$ be a finite $p$-group and $n$ be a normal subgroup of $g$ with‎ ‎$|n|=p^n$ and $|g/n|=p^m$‎. ‎a result of ellis (1998) shows‎ ‎that the order of the schur multiplier of such a pair $(g,n)$ of finite $p$-groups is bounded‎ ‎by $ p^{frac{1}{2}n(2m+n-1)}$ and hence it is equal to $‎ ‎p^{frac{1}{2}n(2m+n-1)-t}$ for some non-negative integer $t$‎. ‎recently‎, ‎the authors have characterized...

متن کامل

Characterization of finite $p$-groups by the order of their Schur multipliers ($t(G)=7$)

‎Let $G$ be a finite $p$-group of order $p^n$ and‎ ‎$|{mathcal M}(G)|=p^{frac{1}{2}n(n-1)-t(G)}$‎, ‎where ${mathcal M}(G)$‎ ‎is the Schur multiplier of $G$ and $t(G)$ is a nonnegative integer‎. ‎The classification of such groups $G$ is already known for $t(G)leq‎ ‎6$‎. ‎This paper extends the classification to $t(G)=7$.

متن کامل

THE STRUCTURE OF FINITE ABELIAN p-GROUPS BY THE ORDER OF THEIR SCHUR MULTIPLIERS

A well-known result of Green [4] shows for any finite p-group G of order p^n, there is an integer t(G) , say corank(G), such that |M(G)|=p^(1/2n(n-1)-t(G)) . Classifying all finite p-groups in terms of their corank, is still an open problem. In this paper we classify all finite abelian p-groups by their coranks.  

متن کامل

A note on the order of the Schur multiplier of p-groups

Let G be a finite p-group of order pn with |G′| = pk, and let M(G) denote its Schur multiplier. A classical result of Green states that |M(G)| ≤ p 1 2 n(n−1) . In 2009, Niroomand, improving Green’s and other bounds on |M(G)| for a non-abelian p-group G, proved that |M(G)| ≤ p 2 (n−k−1)(n+k−2)+1. In this paper, we prove that a bound, obtained earlier by Ellis and Wiegold, is stronger than that o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2017

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2017.09.013